Overview of Warp, a simulation code for studies of intense ion beams and plasmas

Alex Friedman
Simulations and Theory Group Leader,
Heavy Ion Fusion Science VNL

Warp combines features of a plasma simulation and an accelerator code

Particle-in-cell with several self-field models (explicit or implicit electrostatic, explicit electromagnetic)			
WARP3d	WARPrz	WARPxy	
x, y, z, p _x , p _y , p _z warped Cartesian	r, z, p_r, p_θ, p_z	x, y, p_x, p_y, p_z	

"lattice" of focusing, bending, and accelerating elements				
sharp edged	axially varying multipole moments	data on a 3D grid	first-principles electrostatic elements at subgrid scale	

user-programmable interpreter interface (Python)

parallelization and advanced algorithms

Key aspects of Warp

Techniques

- "Warped" Cartesian mesh allowing simulations of bent beam lines
- Time is independent coordinate for particle motion
- Adaptive Mesh Refinement (AMR) and cut-cell boundaries
- Large ∆t algorithms
- Boosted frame
- Time-dependent and steady-state modes
- Parallel processing

Capabilities

- Time-dependent space-charge limited injection, inc. AMR
- Secondaries, ionization, Coulomb collisions
- Arbitrary applied fields in space and time
- Overlapping beam-line elements
- Non-paraxial treatment
- "Quasi-static" mode for long-term simulations of electron cloud effects

WARP-POSINST unique features

merge of WARP & POSINST

new e⁻/gas modules

Particle-In-Cell simulation with Adaptive Mesh Refinement

In this modest (r,z)
 example, we obtain
 a ~ 10x savings in
 computational cost
 for the same
 accuracy

- AMR implemented in 2-D and 3-D geometries
- Parallelization of MR follows decomposition of the base grid
- E-M mesh refinement in development